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Abstract

We report direct evidence of the energy loss of galactic cosmic rays as they
diffuse in magnetic irregularities expanding with the solar wind. Using the Cos-
mic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer
(ACE), we report on the energy-dependence of the electron-capture decay of the
secondary isotopes 49V and 51Cr. At the highest energies observed by CRIS, where
electron attachment is unlikely, 49V and 51Cr are essentially stable; at lower ener-
gies the timescale for electron attachment is much shorter and substantial decay
does occur. Comparing the energy dependence of the daughter/parent ratios
49Ti/49V and 51V/51Cr during periods of solar minimum and maximum demon-
strates that the solar modulation parameter φ is about 400 to 700 MV higher
during solar maximum than at minimum. Absolute values of φ inferred from
these electron-capture-isotope data agree well with values inferred from compar-
ison of the observed elemental energy spectra with model calculations.

1. Introduction

It has long been known that the flux of cosmic rays near Earth varies with
the eleven-year solar cycle, due to the effects of convection and diffusion in the
outwardly flowing solar wind. The necessity of including adiabatic deceleration
was made clear when it was demonstrated that this process explained the observed
low-energy flux of cosmic rays being linear with energy [8]. These effects can
be modeled well using a spherically symmetric Fokker-Planck equation, which
accounts for convection, diffusion and adiabatic energy loss of cosmic rays in the
heliosphere [4]. The resultant modulation of cosmic rays in the heliosphere can
be characterized by a parameter, φ, which denotes the average amount by which
the rigidity of a particle is decreased as compared to the value in the interstellar
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Fig. 1. 49Ti/49V abundance ratio near Earth. (a) at solar minimum with calculated
curves for (top to bottom) φ = 0, 200, 400, 600 MV. (b) at solar maximum with
calculated curves for (top to bottom) φ = 0, 600, 800, 1000, 1200 MV.

medium. We present here direct evidence of energy loss in cosmic rays due to solar
modulation [6] using data from the Cosmic Ray Isotope Spectrometer (CRIS) [10]
on board the Advanced Composition Explorer (ACE) spacecraft [11].

2. Electron-capture decay

We probe solar modulation using electron-capture-decay isotopes, which
are fully stripped and essentially stable at high energies but which decay when
propagating at lower energies where the cross section for electron attachment is
much higher. The use of electron-capture decay isotopes to quantify the effects of
solar modulation was first proposed by [7]. The electron-capture-decay isotopes
49V, which decays to 49Ti with a laboratory half-life of 337 days, and 51Cr, which
decays to 51V with a laboratory half-life of 27.7 days are good for probing the
effects of solar modulation since these half-lives are short compared to the time
scales for fragmentation or escape from the Galaxy, and the spectral features
expected from their electron-capture decay are well within the energy range of
CRIS.

3. Procedure

The data were collected during two distinct periods during the present solar
cycle: 681.25 days between August 28, 1997 and August 17, 1999, defined as “solar
minimum,” and 925.72 days between February 24, 2000 and January 5, 2003,
defined as “solar maximum.” Data were excluded during large solar events where
high flux of low-energy particles may have degraded isotopic resolution in CRIS.
The daughter-to-parent abundance ratios during solar minimum demonstrate the
effects of electron-capture decay at lower energies. Figures 1a and 2a show an
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Fig. 2. Same as figure 1 but for 51V/51Cr.

upturn below ∼ 300 MeV/nucleon for both 49Ti/49V and 51V/51Cr, which is
indicative of the decay of low-energy 49V and 51Cr to 49Ti and 51V, respectively.
Figures 1b and 2b, however, show that at solar maximum, these ratios are much
flatter, displaying at all energies the values characteristic of the higher energies
at solar minimum.

4. Discussion

Using a “leaky-box” model of interstellar propagation based on [5], changes
in the flux and energy of these cosmic-ray nuclei due to spallation with interstellar
gas atoms and ionization losses are taken into account. The attachment and loss
of electrons, and the effects of radioactive decay are included. The method of [3]
is applied to account for diffusion, convection and adiabatic energy loss in the
heliosphere. Performing this calculation using different levels of solar modulation
(different values of φ) shows a decrease ∆φ ∼ 400 MV between solar minimum
and maximum in both cases. To quantify the change in φ for these nuclei in the
heliosphere, a chi-squared fit was applied on each set of data to the curves of var-
ious φ. This resulted in φ ∼ 350 - 400 MV in both cases for solar minimum and φ
∼ 800 - 1100 MV for solar maximum. In the case of 49Ti/49V, the fragmentation
cross sections for production of 49Ti were decreased by 15% from the cross sections
obtained from [9, 12, 13, 14], since the calculated values of 49Ti/49V exceeded the
measured ratios by ∼ 15%. Given uncertainties in these cross sections of 10 -
20%, this discrepancy can be expected.

Another way to infer φ values involves comparing spectral fits to low-
energy CRIS data for major elements with model calculations [1, 2]. These values
are statistically more precise as they allow φ to be observed on time scales as
short as a solar rotation, but they depend on model assumptions about the shape
of the cosmic-ray source spectra and the energy dependence of the mean-free-
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Fig. 3. Time dependence of φ for oxygen (line) from solar minimum through maxi-
mum. Values of φ using the electron-attachment feature in the energy dependence
of daughter-to-parent ratios for pure-electron-capture secondary nuclides are shown
(horizontal shading: 49Ti/49V; vertical shading: 51V/51Cr).

path for escape of cosmic rays from the Galaxy. The φ values obtained from the
electron-capture secondaries do not depend strongly on such assumptions, since
these results rely on abundance ratios between pairs of nuclides that are pro-
duced by fragmentation of the same parent species. We use oxygen in Figure 3
to demonstrate the consistency and accuracy of these two ways of determining φ;
spectral fits using other major elements give similar results.
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